

INSTALLATION OPERATION MAINTENANCE 800-2000 AMPS

THE BREAKER
THAT LETS YOU
CHANGE ITS MIND
GTE SyIVANIA
Courtesy of store.ips.us

CONTENTS

Delivery of Equipment

1. Recelving
2. Installation of separ

3. Installation of separaty 1
4. Storage
5. Storage 1
6. Handling

II. Operation

1. Manual breakers . 2
2. Electric Breakers . 2
3. Safety tripping . 2
4. Anti-pumping and control characteristics . 2
5. Auxillary circuits (Cradle/Element) . 3
6. Auxiliary clrcults (Devices) . 3
7. Arrangement of cublcle door . 3
8. Static sensors .
9. SettIng static trip sensors . 4

10. Padlocking . 4
11. Key Interlocks . 4
12. Devices . 5
III. Maintenance
13. Frequency of inspmation . B

2, Arc chutes . 6
3. Poles . 6
4. Braaker pole assembly .
5. Auxillary contacts . 7
6. Devices . 7
7. Lubrication . 7
IV. Adjustments and Inspections . 8-12
V. Replacement Procedure . 13.16
VI. Replacement Parts List . 17.19
VII. Tables and Curves . 20.23

INSTALLATION-OPERATING - MAINTENANCE INSTRUCTIONS

SSPB BREAKERS $800-1600 \div 2000$ AMP FRAMES

The complete SSPB line encompasses frame sizes The operating mechanism offers a choice of either from 800 to 4000 amperes, up to 600 volts A.C. Basic/sub-assemblies include the operating mechanism, contact structures, arc chutes, and static trio device.
manual for local control, or electrical for remote operation. A stored energy principle of operation is utilized for either type.

1. DELIVERY OF EQUIPMENT

1. Receiving

Each shipping section of switchgear has been palletized to facilitate moving. The shipping section is covered with o transparent plastic cloth to inhibit entrance of foreign particles and permit carrier awareness of shipping contents.

Immediately upon receipt of equipment, examine components making note of any damages incurred in transit. If necessary, immediately file a claim with the delivering carrier and notify your Sylvania representative.

CAUTION:

The drawout breaker elements are secured to their cradles instalied in the switchgear assembly. In order to withdraw the element, it is first necessary to rernove the two bottom shipping bolts holding the orange shipping plates to the stationary cradie. With these bolts removed, the breaker may be cranked (counterclockwise) to its open position and then fully withdrawn. In the withdrawn position, the remaining four shipping bolts and orange plates should be removed and discarded.

2. Installation of Separately Shipped Breakers

Insert racking handle Into cell being installed with breaker and turn counterclockwise until cradie is in withdrawn position. White lines surrounding collar of withdrawing device indicate cradie position. Three white lines visible ahead of cell frame or front of closed door indicates cradle is in isolated position. In this position, the two telescopic ralls should be fully withdrawn to accept the breaker element.
Remove breaker element from shipping corton in the manner outlined under "Handling". After a visua! inspection for damage, mount element on rails locating holes in the breaker support over the four mounting metric bolts $(8 \mathrm{~mm} .0 .7 \mathrm{~mm}$ thread). Secure element to rails with lock washers and 8 mm metric nuts using a 13 mm metric wrench or $1 / 2$ inch open end wrench.

3. Storage

diate use must be stored in a ventilated room anc protected from dust and water by means of non absorbent covering.

4. Handling

Although the SSPB circult breakers include higl precision components, they will only remai reliable if handled with care.

Never rest the element on the contact jaws. Th breaker element must always be laid on a cloar flat surface either upright or on its side. Th breaker can be easily and safely transported on lift truck. For transporting in this manner, a pallt must be used.

Toward the top of the side plates of the breaki element, lugs (two on each side) are provided fs lifting. Never lift element by its contact jaws (its static trip sensor box.

11. OPERATION

1. Manually Operated Breakers

With the manually operated SSPB breaker, a simple rotary motion of the operating handle in the counterclockwise direction for approximately 90 degrees charges the springs for a close-open operation. Rotation clockwise back to its normal vertical position initiates the spring release for closing. The closing speed is completely independent of the operator. A position indicator located on the front escutcheon indicates the position of the main contacts: red for "on" or "closed". green for "olf" or "open

The breaker may be tripped manually by depressing the manual trip button. Through linkages, this action causes the mechanism trip latch to be displaced collapsing the operating springs and thereby opening the breaker contacts.

If breaker is equipped with a lock-out device or undervoltage release, refer to paragraph 4 operating instructions.

2. Electricaliy Operated Breakers

For electrical operation, a fractional horsepower, high-torque gearmotor provides energy for charging the springs. Charging requires approximately 5 seconds. Recharging takes place automatically after the breaker is closed. A timit switch removes the gearmotor supply voltage at the end of travel. The supply voltage at the motor terminals may be between 90 to 110% of the rated voltage.

After the springs are charged, the closing springs are held by an electromagnetically operated latch. Wheri the breaker is closed by depressing the manual close button located on the front escutch. eon the closing latch is displaced, thereby collapsing the springs and closing the main contacts. This action is initiated with remote closing by energizing the electromagnet.

The breaker may be manually tripped lacally or electrically tripped from remote locations.

In the event of power loss, it is possikle t:r manually charge the springs of an electricaily operated breaker for close-open operation. The emergency operating handle is identical in appearance to the handle used on manually operated breakers. The method of spring charging differs from the manual-
L--deme in that the handle is rotated
until there is no apparent spring resistancer to the operator. To fully charge the springs manually requires approximately 15 reversals or oscillations of the handle.

The control panel or front escutheon differs from the manually operated breaker in that two push

buttons are furnished, one for initiating closing of main contacts (red) and one for opening (green). In addition, a spring indicator is included (yellow) for charged, and (black) for discharged condition.

3. Safety Tripping

If the breaker is inserted or withdrawn with its main contacts in the closed position, a mechanical linkage automatically trips the breaker before separation of the maln contacts during withdrawal or before closing of the main contacts during insertion. The same device prevents the closing of the breaker between positions'test'and'service'.

4. Anti-Pumping and Control Characteristics

Anti-pumping its assured in both the local and remote control operations. If the local close button is held depressed or a remote closing signal maintained, it will be necessary to interrupt this action, after tripping breaker, to effect a subsequent closing.

If tripping is a result of overioad or short circuit current and the breaker is equipped with a local reset lockout device, it is necessary to completely depress the trip button in order to effect a sub. sequent closing,

By padlocking the local trip button in a depressec position, it is impossible to close the breake
charged closing springs cannot be released.
Maintaining a remote tripping signal nullifies any remote or local closing action. It is possible to depress the local close button causing the closing spring to release; however, the main contacts will not close until the remote tripping signal is removed. Should it be desired to prevent accidental closing when the local trip button is released, an undervoltage release device with lockout must be used for remote tripping.

Where electrically operated breakers equipped with an undervoltage release are closed by a constant signal, there are two possible methods of operating. depending upon whether the closing electromagnet and undervoltage release are energized by the same source or separate sources.

$$
\begin{array}{cc}
\text { Common Source: Voltage drops - breaker trips } \\
& \text { Voltage restores - breaker } \\
\text { automatically closes }
\end{array}
$$

Separate Source: Voltage drops - breaker trips Voltage restores - breaker remains open

The closing signal must be momentarily removed in order to reclose the breaker. If a closing signal is maintained even when the closing spring is discharged, the breaker will automatically close at the completion of spring charging. This would occur where voltage is applied simultaneously to the charging motor and closing electromagnet. The latch keeping the closing spring charged cannot be released if the breaker is in the closed position.

5. Auxlliary Circuits (Cradle/Element)

The SSPB breaker can be equipped with a maximum of 24 secondary isolating contacts. Each contact is designed to accept two $1 /{ }^{\prime \prime}$ quick disconnect lugs per terminal.

The secondary lsolating blocks may contain up to twenty-four (24) terminals, twelve (12) on cach side, which may be used for breaker operation and alarm circuits. Internal wiring of breakers is numbered in conformity with standard wiring diagrams. The terminats of the secondary or stationary isolating contacts on the cradle are arranged and connected in a manner to permit interchangeability of similar elements.

Six tarminals of the secondary isolatino block are
required to operate electrically operated breakers. Two of these terminals are made continuous through the test-service position in order to provide power for the spring charging motor. The remaining four are for closing and tripping.

In some applications, it may be necessary to electrically connect the breaker in the cradle service position differenilly from that in the tes position. This can be accomplished by removins the test or service terminal. After the fixed second ary isolating contact block has been removed, i is only necessary to remove the terminal by un screwing the fixing screw and breaking the bridgs between the test and service contacts at the nech provided for this purpose.

To protect the auxiliary wires from physically coming in contact with moving parts when the breaker is being inserted or withdrawn, an enclosec passage, located at the point of exit from thi stationary isolating terminal block, is provided.

6. Auxiliary Circuits (Devices)

Auxiliary contacts may be added as an accessor either on electrically oo manually operater breakers. A buitt-in time differential of 15 milli seconds is available between contact group posi tions 1.8 and 9.16 for sequence logic. Contac positions 9.16 act simultaneously with mait contacts.

7. Arrangement of Cubicle Door

The cubicle door for drawout air circuit breake elements is provided with an opening permittin! entry of the control board or front escutcheor plate. A retracting collar surrounding the escutch eon plate permits the operator to rack the breake element from the service position to the test o fully open position without opening the cubicl door. It is, therefore, possible to store breaker without fear of unauthorized personnel havin access to them.

8. Static Sensors

Static sensors consists of separate printed circuit for long time, short time, instantaneous, an ground fault tripping. Components are pro-agor and factory calibrated to insure utmost trippin accuracy. No field calibration is required. Sinc cards have been designed for plug-in field installa tion. it is possible to change systems by simpl
ordering cards from your nearest Sylvania office. When ordering ground fault, it is necessary to indicate whether the system is three or four wire. On a four wire system, a neutral CT will be furnished with the logic card. This CT must be

breaker in accordance with included instructions, The ground fault logic card includes a retractable target that indicates tripping under ground fault conditions.

9. Setting of Static Trip Sensors

In order to prevent damage to static sensor pins, the following procedure should be followed when selecting or changing sensor settings.

1. Loosen two bottom screws holding transparent plastic shield.
2. Raise shield to clear bolt heads and lift out.
3. Select values of sensors desired.
4. Place thumb and forefinger on shorting bar and pull bar forward until shorting pins are cleared.
5. Raise or lower shorting bar to pre-selected sensor value.
6. Return shorting bar to pins until fully reseated.
7. Replace protective shield and tighten screws.

8. Current Sensors

Multi-ratio window type current transforme mounted at the rear of the circuit breaker eleme provide signal source for the static trip sensol Since these sensors for initiating breaker trip derh all necessary energy from the current monitored, n external energy source is required. (Any oth accessory for breaker tripping must be provids with a scparate power source.)

To change tripping range of breaker, transpose of wire on each of three current transformers. Tern nals are marked to indicate primary current settin When making this change on a four wire systa with ground fault oindication, it is necessary 1 change the current transformer located in tt neutral bus (rear of switchboard) accordingly.

11. Padlocking

All SSPB breakers are provided with means fc using a maximum of three padiocks (1/4" to $3 / 8$ shackels) to lock the breaker in the opened c tripped position. To apply padlocks, it is necessar to place the breaker in the rripped position b depressing the local trip buton. While holding th trip button depressed, withdraw horizontal ba located adjacent to trip button and apply padiock: With this bar withdrawn, the trip button is held ii the depressed position, thereby preventing closing.

12. Key Interlocks

If the cradle is provided with a key interlock, th following procedure should be followed for lockin the breaker out:

Withdraw breaker alement to fully disconnec position by turning crank counterclockwise tu stop. (This operation may be performed witl cell door obened or closed.) Turn kev is
cylinder to remove. If key will not rotate in cylinder, turn cradle crank approximately 15 degrees to permit alignment. When stops are aligned, key will rotate for removal.
when energized by a voltage source of 65% ic 130% of rated voltage. An auxiliary contact ir series with the coil opens and removes supply voltage when breaker is open.

With this interlocking system, it is possible to remove the element from the cradle for eithor maintenance or replacement without permitting element insertion until the key has been returned to the key aytinder block.
13. Optional Devices

Shunt Trip (S.T) This device will trip the breaker
Undervoltage Trip (U.V.) When the voltage sour drops below 30\% of rated volzage, the breaker tripped. In the region of 30% to 60% of rat voltage, tripping may or may not occur. No tri ping action will oecur when the supply voltage 60% to 100% of rated voltage.

III. MAINTENANCE

1. Frequency

The frequency of maintenance depends essentially on the conditions of service of the breaker, frequency of operation, fault tripping, relative humid. ity, or presence of dust.

The mechanical endurance of the breaker is 20,000 operations with the main contacts being guaranteed for the life of the breaker. Arc chutes and the arcing contacts are guarenteed a minimum of 1500 make-break operations at the nominal current and voltage (0.2 to unity power factor), 10 makebreak operations at 10 times rated current, or 3 make-break operations at rated short circuit.

To insure performance, it is recommended that breakers be inspected every six months if exposed to dust, every 3000 operations or every six months if left idfe. In general, breakers should be inspected at least once a year.

2. Arc chutes (Fig. 5)

Remove arc chute by depressing or raising back part of retaining lever 61 and rotating clockwise 90 degrees. Lift arc chute upwards clearing arcing horns.

Fig. 5

Wipe the insulating surfaces clean with a dry piece of cloth. The two insulating berriers covering the inside of the arc chute walls may be blackened. In that case, they can be wiped clean of carbon deposits to restore them to their original quality. At the end of 3000 make-break operations at rated current, or 10 times at rated current, or 3 times at rated short circult, it is recommended that the
the arc. This operation enables doubling the of the arc chutes. After two cycies, it is necess to replace the arc chutes.

3. Poles (Fig. 6)

Insulating barriers are located on each side of arcing area for each pole. With a piece of clean, .cloth, wipe barriers to remove any deposits.

Fig. 6

Close breaker and check gap setting of arci horns. If gap exceeds 1.5 mm (0.059 inches), adju contacts by loosening bolt * VI (Fig. 6) setting g to $0.9 \mathrm{~mm} \pm 0.1 \mathrm{~mm}$ (0.035 ± 0.004 inches) a tightening bolt by torquing to $0.8 \mathrm{~mm} \cdot \mathrm{~kg}$. (5.8 । ft.). Remove both fixed and movable arci horns along with insulating barriers when thickne of arcing pads erodes to approximately 0.5 m (0.020 inches).

Main contacts may have spots on them witho affecting the breaker. These contacts can ! cleaned with a very fine emory cloth and thorougl ly wiped to remove any particles. Do not replar main contacts as they are guaranteed for the life , the breaker.

With drawout breakers, clean the main isolatir contacts of the breaker and the correspondir cradie contacts with a piece of clean cloth soake in trichlorethylene. Apply a light coat of Sylvani SSPB-01 grease to the cleaned surfaces.

4. Breaker Element Pole Assembly (Fig. 7)

The pole assemblies are maintained under 0 . $\mathrm{m} \cdot \mathrm{Kg}$. ($2.9 \mathrm{lb} . \mathrm{ft}$.) pressure by each of six bolt (three per side) located on the outside surface o the breaker element. They may be identified a

FIg. 7

5. Auxiliary Contacts (Fig. 8)

The auxiliary contacts located on the front right hand side of the element should not be cleaned or adjusted. A faulty relay should be replaced by placing the breaker contacts in the closed position and removing hold-down screws V3. Auxiliary contacts are only found on electrically operated breakers as a standard item since one of the contacts are required for isolating the shunt trip coil when the breaker is open.

6. Devices

Under voltage, shunt trip, and solid-state trip devices do not require maintenance. In case of failure, replace the complete device.

7. Lubrication

A breaker normally lubricated and operating in dust.free and non-corrosive atmosphere regular over a period of two years can undergo its norm cycle mechanical endurance without any lub cating. As such ideal service conditions are hard encountered, it is advisable to check periodical the lubricating, particularly when unusual ceasii or friction is observed during Inspection.

All rubbing surfaces-(metal to metall are to 1 lubricated with a thin film of high-temperatur high-pressure lubricant equal to Sylvania SSPB-0 Hardened grease and dirt should be removed I use of trichlorethylene solvent. The main sha: trip rod, intermediate manual control shaft, fre return charging spring and gear train for electric operation do not require lubrication since they a provided with sealed bearings. Do not lubricate ar releases or grounding terminal.

IV. ADJUSTMENTS AND INSPECTIONS

The following adjustments and inspections were performed at the factory following installation of various accessories. These procedures may be followed for field adjustment and inspections, realizing that tolerances are based upon the life of normal mechanical endurance for breakers. For normal service, the limits of admissible wear has been included. When these limits are reached, it is necessary to either readjust the components to the dimensions shown, or to replace components if these dimensions cannot be met.
A. CRADLE ACCESSORY

1. Limit switch for position indication (1600A and 2000A frames only)
a. Service position (Fig. 9).

Adjust screw (10) to insure operation of the limit switch $3 \mathrm{~mm} \pm 0.5 \mathbf{~} 0.118$ ± 0.020 inches) before the service position stop. (Eliminate play by pulling on telescopic rails while making adjustments.

Fig. 9
b. Test position

Adjust the support (11) and the two screws (12) to insure the operation of the limit switch 3 mm (0.118 inches) before the test position in the direction of withdrawal. (Ellminate play by pushing on rail whille making adjustment).
c. Isolated position

Adjust the support (11) and the two screws (12) to insure operation of the limit switch 2 mm (0.079 inches) before the stop of the isolated position. (Eliminate play by pushing on rail when making adjustments).

B. CIRCUIT BREAKER

1. Breaker Assembly (Fig. 10)
a. Tightening of pole assembly

Tighten six screws (1) painted torquing to $0.4 \mathrm{~m}-\mathrm{kg}(2.9 \mathrm{lb} .-\mathrm{ft}$.$) .$

2. Pole (Fig, 11)
a. Adjustment of arcing contacts With breaker in closed position, I boit (3) and gap arcing contacts

$\pm 0.1 \mathrm{~mm} 10.035 \pm 0.004 \mathrm{ir}$ Tighten bolts torquing to 0.9 ($5.8 \mathrm{lb} .+f$.).
NOTE: All arcing contacts of th pole must be within 0.1 mm inches) of each other.
LIMIT OF WEAR; 1.5 mm inch).
b. Torquing requirements

1) Flexible braid (7) 800 amp - $0.8 \mathrm{~m} \cdot \mathrm{~kg}$ ($5.8 \mathrm{lbs} . \mathrm{ft}$.) $1600-2000 \mathrm{amp}-1.3 \mathrm{~m}-\mathrm{kg}$ ($9.4 \mathrm{lbs} . f \mathrm{ft}$.)
3. Overload and short circuit release
a. Tripping (Fig. 12)
1) Adjustment. With breaker in closed position and release reset, back off red nut until nearly all threads are exposed. Tighten same nut until distance between tripping striker (11) ard luy (12) uf the la (uli (1ग) shown in the normal position is $1 \pm 0.5 \mathrm{~mm}(0.039 \pm 0.020$ inches).

Fig. 12
2) Inspection. Place breaker in closed position and check to see that there is a minimum clearance of 0.5 mm $(0.020$ inches) between the tripping striker (11) and lug (12) of the latch (13) shown in the normal position.
LIMIT OF WEAR: $0.1 \mathrm{~mm}(0.004$ inches).
To test tripping of breaker by the release crank, place a wire hook as shown in Fig. 13 and hold while applying a momentary signal of 12-18 volts D.C, to the tripping actuator EX. When release unlatches, slowly allow relcase crank to wlthdraw until breaker trips open.

Fia. 13
NOTE: Restraining release crank (14) while performing this test results in the blocking of resetting
or trips. Therefore, using ho restore release crank to its reset latched position.
b. Resetting

1) Breaker equipped with signal dication with memory for overls ald sturt cilcuit release (with without indication.) (Fig. 14).
a) Adjustment. When breakers equipped with this accessory is necessary to place breakel open position and adjust scı (16) to effect latching the lease. A very distinct el Indicates latching. To insur margin of safety, unscrew $\% /$ a turn.
b) Place breaker in open posit and check to see that 1.5 ; (0.059 inch) clearance is av able.
LIMIT OF WEAR: Non.lat ing.

EXTAEME POSITION

Fig. 14
2) Breaker equipped with signa dication on overload and shor cult tripping with local rese (Fig's 16 and 16).
a) Adjustment. Insert wire hor shown in Fig. 13 and hol lease crank (14) while app momentary slgnal of 9-18 DC to the tripping actuator When release unlatches, sil allow release crank to withi to tripped position show ..- er uttal AL- -alanas :
tripped position and the crank (10) resting against stop (20), adjust link (21) to allow 1 土 0.5 mm ($0.039 \pm 0.020 \mathrm{inch})$ ctearance. Press the local tripping pushbutton (23) while adjusting screw (24) 20 effect resetting of the release. A distinct click will be heard when the release crank latches. Unscrew one turn to insure a margin of eafoty in rocotting.

Fig. is
b) Inspection. With the breaker in the open position, press the trip button (23) Fig. 16 and check travel of release bar. Distance between maximum position of reset and latch should be $0.5 \mathrm{~mm}(0.020$ inch). Check play between lever (24) and adjustment screw (24) for a minimum of 0.2 mm (0.008 inch). Press the pushbutton fully to check for a minimum clearance of 0.2 mm (0.008 inch) between lug (12) of the latch (13) and the bottom of the slot.
4. Voltage Tripping Devices (Accessory)
A. Tripping (Fig, 17 and 18)

1) Adjustment. Place breaker in open position and unscrew adjusting reset screw (30). With release bar in latched on position resulting from breaker being in open position, adjust linkage (26) to provide $1 \pm$ 0.5 mm ($0.039 \pm 0.020 \mathrm{inch})$ between lever (28) and lug (12) of
2) Inspection. Place breaker to the closed position and inspeet to see that a minimum of $0.5 \mathrm{~mm}(0.020$ inch) exists between lever (28 and lug (12) of the lever (13) shown in the normal position.
LIMIT OF WEAR: 0.1 mm 10.004 inch).
Holding the striking pin (29) as illustrated in Fig. 23, apply rated voltage to the holding coil, placing 'release bar in unlatched position. Remove voltage and allow relase - bar to slowly withdraw observing

Fig. 17
breaker tripping.
NOTE; In order to prevent block. ing of the retcase bar from being reset when breaker opens, it is necessery to return release bar to its latched position by means of the hook illustrated in Fig. 23.
B. Resetting

1) Adjustment. With the breaker in the open position and the release bar latched as illustrated in Fig. 14, adjust screw (30) lengthening linkage until stirrup is against stop (29), then back off $1 / 2$ turn.
2) Inspection. Place breaker in latched position as illustrated in Fig. 18. Check for minimum clearance of 2 mm (0.079 inch).
LIMIT OF WEAR: Non-Latching

Fig. 18
5. Auxiliary Contact Block Support Adjust. ment (Fig. 19).

With contact blocks removed, adjust nu (32) until distance shown in Fig. 19 i $44.5 \pm 0.5 \mathrm{~mm}$ (1.753 ± 0.020 inch).
LIMIT OF WEAR: Overall travel of auxil iary contact should not exceed 0.1 mn (0.004 inch).
6. Limit switch on Trip Rod (Accessory) Limit switch for signal indication of trip ing on overload and short circuit.
A. Adjustment (Fig. 20). Place breaker i closed position with overcurrent an short circuit release bar latched. Dt form strip (36 to obtain clearanc between strip (36) and spring pin (37)

B. Inspection. Check operation of micro switch by tripping breaker.
7. Limit switch on voltage release (Accessory) The undervoltage release device can b equipped with two separate dimit switches One will indicate when the undervoltag release bar is latched and the other wil indicate undervoltage coil being energized.
A. Limit switch for Latch Indication. Plac bar in latched position as shown if Fig. 17 and 18. In this position, th limit switch contacts will be closec Deform strip (38) Fig. 21 to provide .maximum gap setting of 1 mm (0.03 : inch) between strip (38) and lug (39) NOTE: This adjustment must be pei formed without applying voltage to th undervoltage holding coil. Followin adjustment, operate voltage releas device permitting release bar to ur latch. Inspect limit switch to see tha contacts open.

B. Limitswitch for Voltayt Indication. This limitswitch has no adjustments. Check position of contacts by applying and removing voltage to holding coil of solenoid.
8. Closing Adjustment Electrically Operated Breakers
A. Adjustment (Fig. 22). Place breaker in tripped position with closing springs fully charged. Adjust screw (44) to obtain $4 \pm 0.5 \mathrm{~mm}(0.158 \pm 0.020$ inch) clearance between lever (45) and end of serew (44). Adjust screw (46) on trip button for $4 \pm 0.5 \mathrm{~mm}(0.158 \pm$ 0.020 inch) clearance between strip (47) and screw end (46).

NOTE: Breakers fitted with a D.C. electromagnetic for closing have a sefies resistance (economizer) which is placed in series with the coil, after pickup, thereby reducing current consumption to a minimum. To adjust, hold 1 mm (0.039 inch) gap setting of the electromayret and deform limitswitch strip until contacts close.

Fig. 22
B. Anti-Pumping Inspection. Mechanically operated breaker. Depress trip button and hold while charging and unlatch closing springs, Breaker contacts must remain open.
Electrically operated breaker. Close breaker by depressing local close button and allow gear motor to charge stored energy springs. While holding close button depressed, depress irip button, Breaker must trip and remain tripped until close button is released for next cycle of operation,
C. Undervoltage lockout (Fig. 23). When the undervoltage release is provided with lockout to prevent breaker reclosing upon voltage restoration, the
dulu ..
Applying voltage to the relay allows lever (58) to come into contact with adjusting stop (60). Adjust stop (60) for a clearance of $0.6 \pm 0.4 \mathrm{~mm}(0.024$ $\pm 0,016$ inch).
Remove voltage, allowing lever (59) to rise, check for clearance of 0.1 mm (0.004 inch) between lever (50) and pin (61).

LIMIT OF WEAR: 0.1 mm (0.004 inch)

9. Tripping - By Local Mechanical Pushburton.

If the breaker is fitted wilh a signol system for overload and short circuit tripping with local reset, adjustments should be carried out as previously outlined. In other cases, adjust screw (24) (Fig. 24) for obtaining clearance of $2+0.5 \cdot 0.0 \mathrm{~mm}(0.079+$ 0:158 inch) between strip (25) and the end of the screw (24).

V. REPLACEMENT PROCEDURE

A. Arc Chute (Fig. 25), To remove arc chute, raise retaining lever (61), rotate lever 90 degrees to clear path, and remove arc chute by lifting upwards. The reverse procedure is followed for repositioning arc chutes, making sure the respective arc chutes fit over arcing horns (62).

2. Insulating strips. When replacing contacts, it is recommended that the insulating strips be replaced also. Using a screwdriver, remove two fasteners (4) retaining insulating strip (3). Replace strips using new fasteners.
C. Auxiliary Contact Block (Fig. 271. When removing contact blocks (1-4), place breaker in closed position before loosening contact cradle bolt V3. Slide cradle free of V3 and remove contact assemblies, To replace contact blocks, reverse procodure making sure wires are returned to their original positions.
The same procedure is followed for removing or replacing contact blocks 6-8, except the breaker is placed in the open position.

Fig. 27
D. Overload and/or Short Circuit Release. Remove wires from plus (t) and minus (-) terminals on solid-state control panel located on front of braaker element. Place breaker in closed position and apply an 18 volt DC 9 millisecond pulse to plus and minus wires gaing to EX trip actuator.
With voltage applled, breaker should trip. Repeat procedure, reducing voltage in increments until 12 volts DC is reached. At thls level, breaker should not trip. Do not attempt to adjust actuator.
Test sets are avallable as an accessory for eherkinn the nalithratinn af cedo h.a-t...-
B. Arcing Contacts and Insulating Strips (Fig. 26), 1. Arcing contacts. With breaker in open position, loosen retaining bolts VI and remove contact by sliding forward. Replace with new contact leaving retaining bolt VI loose. Close breaker and loosen bolt V2 (two per contact) approximately 1.5 mm (0.059 inch) or untll contact clears locating boss E, then remove by lifting upwards, Replace with new contact, checking to see that contact seats in locating boss before tightening bolt V2. With 0.9 mm (0.035 inch) feeler gauge, position contact (1) and tighten bolt VI.

E. Undervoltage and Shunt Trip Release (Fig. 28). To remove trip device (8), place breaker in open position and remove coil wires from terminal block (81) located on rear of breaker. By removing pin (86) and mountiny nuts (82). the device may be removed. When replacing trip device, lubricate and adjust as described in Chapter IV under Voltage Tripping Devices.
F. Secondary Isolating Contact Block (Fig. 29). Removal of contact block is accomplished by removing wiring and mounting screws illustrated in Fig. 29.

G. Motor (Fig. 30). To gain access to motor, remove protective cover (5) held by two bolts (3). After removing wires from terminal block (4) and mounting nuts (6), lift motor from gear train. When replacing motor, check to see that clearance exists between pinion and gear. No further adjustment is required after motor is

H. Closing Solenoid (Fig. 31, 32). Slide coil and housing from plunger (Fig, 31) after removing coil wires from terminal block (4) and four mounting bolts (11). (Fig. 32) if breaker is equipped with closing preventer which would be mounted adjacent to the closing solenoid, the coil and housing cannot slide sideways. It is,

therefore, necessary to remove horseshoe retaining washer (8) and linkage pin from plunger so complete assembly may be lifted out. Coil may be removed from housing as illustrated in Fig. 31. When replacing, make adjustments os dc scribed in Chapter IV, Voltage Tripping Devices.
shown.
When replacing limitswitch, follow adjustment instructions outlined in Chapter IV, Limitswitch On Trip Rod.

Fig. 34
L. Undervoltage and Shunt Trip Limitswitche (Fig. 35).

1. Limitswitch for trip indication. To remov the limitswitch (28) for indicating trippir by undervoltage or shunt tripping, brea connections and remove screw: (178) When replacing limitswitch, follow adjus ment instructions outlined in Chapter II Limitswiteh On Voltage Release.

2. Limitswitch Operating on Undervoltage. Limitswitch (29) used to indicate voltage being applied to holding coll of solenoid may be removed by breaking connections and removing screws (43).

When replacing limitswitch, move amacure of solenoid to see that limitswitch does not prevent solenoid from closing. Adjustment may be made by bending limitswitch lever.

VI REPLACEMENT PARTS

VI. REPLACEMENT PARTS - CONTINUED

VII

TABLE 1

INTERRUPTING RATINGS

ACCESSORIES:

- Shunt trip
- Undervaltage trip
- Koy interlock provision on Packing Mechaniem
- Extra auxiliary contacta (up to 16)
- Ground fault protection
- Short timo delay
- Mechanical interlock
- Portabla test me
- Boll alarm

TABLE 2 STANDARD TYPES

TABLE 3TIME DELAY CHARACTERISTICS

Irip Punction	Time Delay Band	Time Delay
tong Time	Maximum Intermediate Minimum	$30-45$ Seconds + 15-22 Secondi + 6-7 Seconds
Short Time -nu Ground	Maximum intermectate Minimum	0.1 Seconds U.2-0.3 Seconds* 0.4 Seconds
	Maxlmum Intermediate Minimum	No Insentional Detoy

TABLE 1 PHACE AMPEIC TAR AND ONDUNG PILK-UF KANGES

- Setting above maximum momere tep rating and broaker frame tize ts aveltoble for coordination, if neaded, but is not themal setf-protecting.
* The golerence on afl callbreted plek-up settinge for lonetime, ahort-time, Instantanoous, and ground tunction is $\pm 10 \%$ thrnesth the mamanem..-
Cradle Limitswltch Contact nating

Lood
Resistive

Reactive

Max. Voltape		Max. Currenen
$24-500$ A.C.	6	
$24-110$ V U.C.		3.5
250 V.C.		1.2
$24-500$ V A.C.		6
$24-110$ V.C.		2.5
250V D.C.		0.8

Short Circuit Indication Limitswitch C-2

hood	Max. Votrapt	
Resistive	$125 V$ A.C.	5.0
	$250 V$ A.C.	2.5

Overload and Short Circuit Indication Limitswitch C-1

Load
Resistive

Max. Voltage
115-230V A.C.
110 V D.C.
220V D.C.
115-230V A.C.
115-230V
Max. Curront
8A
0.5
0.2
5
3
*Undervoltage, Time Delay, Undervoltage, and Shunt Trip
Indication Limitswitch (C-3) (C-5)

Loed
Resistive

Reactive Lighting

Mox. Voluge
115 -250V A.C. 110 V D.C. 220V D.C. 115-250V D.C. 115-250V A.C.

Max, Current
8A
0.5A
0.2A

5A
3A
*Operatee monentarly ot cirouit breaker tripe

Enorgized Undervoltage Relay Indication Limitswitch (C-4)

Lood
Resistive

Man. Voltage
$115 \cdot 250 \mathrm{~V}$ A.C.
125V D.C.
250V D.C

Max. Current

SALES OFFICES

Pompano Beach
St. Petersburg
Tampa

ALABAMA
Trussville
CALIFORNIA
Los Angeles
Sacramento

CALIFORNIA
Qurlingamo
Los Angeles
gEORGIA
Allants

MANUFACTURING PLANTS
MISSISSIPP
Jackson
missoliri
St. Louls
OHIO
Cleveland

SOUTH CAROLINA Lancaster

TEXAS Dallas
VIRGINIA
Hampton

WEST VIRGINIA Parkersburg
puerto rico San Juan

FIELD DISTRIBUTION CENTERS

ILLINOIS	NEW JERSEY Tntarhnra
Lit. Grove Vllage	
NEVADA	OREGON
Sparks	Portland

NEW JERSEY

OREGON
Portland

ELECTRICAL EOUIPMENT GROUP

